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1 Summary
The objective of this project was to develop robust numerical methods for solv-
ing mathematical models of nonlinear phenomena such as nonlinear conservation
laws, surface/image/data reconstruction problems, advection-dominated flows, multi-
phase flows, and free-boundary problems, where shocks, fronts, and contact dis-
continuities are driving features and pose significant difficulties for traditional nu-
merical methods.

The main thrust of this research program was to explain some intriguing nu-
merical observations reported by Lavery, Jiang, and Guermond [4]1 that seemed
to indicate that for some classes of PDE’s equipped with non-smooth coefficients
and/or non-smooth right-hand sides it pays off to approximate the solution directly
in L1. Contrary to standard stabilized L2-based techniques, L1-based methods did
not seem to require additional ad hoc tunable coefficients or limiting procedures.

We have finally elucidated some of the above issues and we can report that the
major achievements of our 2.5 year long L1-program spanning from June 2009 to
November 2011 are the following:

(1) L1-minimization for PDEs: We have shown that it does pay off to work in
L1 for steady equations Hamilton-Jacobi equations. We have proved in par-
ticular that L1-based finite element approximations converge to the physically
relevant solution, i.e., the so-called viscosity solutions. We have developed al-
gorithms for solving L1-based discrete minimization problems and we have

1Only the papers written by the PIs under the umbrella of the present grant are cited and listed
at the end of the report in the Reference section.
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proved that our algorithms converge and their computational complexity is
optimal in one space dimension.

(2) L1-reconstruction of data: We have developed algorithms for L1-based data
fitting and surface reconstruction. We have developed a localized (easy to
parallelize) version of the L1-based minimization methods.

(3) Entropy viscosity for nonlinear conservation laws: As a by-product of the
research program on the L1-approximation of Hamilton Jacobi equations we
have discovered that time-dependent nonlinear conservation equations can be
stabilized by using the so-called entropy viscosity.

We believe that the entropy viscosity idea is an important conceptual break-
through. The main stabilization mechanism in this method is a nonlinear dissipa-
tion proportional to the local size of an entropy production. For this reason we
call the method entropy viscosity. We propose to use the local residual of an en-
tropy equation to construct the artificial viscosity. One immediate consequence of
this choice is that the viscosity is proportional to the entropy production, which is
known to be large in shocks and to be zero in contact discontinuities. As a result,
this strategy automatically distinguishes shocks and contact discontinuities, i.e.,
no detection of contacts and no artificial compression is needed. This strategy is
inspired from the observations that we made when solving Hamilton Jacobi equa-
tions using the L1-minimization technique: approximate L1-minimizers solve the
PDE in the smooth regions but they do not in the non-smooth regions; the approx-
imation mechanism is dominated completely by the entropy production in the
non-smooth regions. We have implemented this idea and we have obtained very
encouraging numerical results. In particular, we have observed excellent resolu-
tion of contact waves, and the additional cost of the L1-minimization is avoided.

2 Hamilton-Jacobi equations

2.1 One space dimension
We have introduced anL1-based minimization technique to solve steady Hamilton-
Jacobi equations in [11]. We have proved in this paper that the method converges
to the unique viscosity solution. Adding an entropy penalty to the L1 functional
is critical to achieve convergence to the correct solution.

We have also proposed an algorithm of optimal complexity to solve one-
dimensional steady Hamilton-Jacobi equations in [13] and [6]. We have proved
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convergence in the case of one-dimensional stationary Hamilton-Jacobi equations
with convex Hamiltonian. Actually we have proved in one space dimension that
our algorithm is quite similar to the well-known Fast marching/Fast sweeping
methods of Sethian and Osher which means that the Fast marching/Fast sweeping
methods construct almost minimizers in L1. This property was totally unknown.
We conjecture that this analogy still holds in higher space dimensions. If true our
methodology would then prove convergence of the Fast marching/Fast sweeping
algorithms, since we have already proved that sequences of almost L1-minimizers
converge to the viscosity solution of the equation.

We show in Figure 1 the solution of

1
2π
|u′(x)| − | cos(2πx)| = 0, u(0) = 0, u(1) = 0, (1)

using the algorithm developed in [13] and [6].

Figure 1: Solution to (1) using 100 degrees of freedom.

2.2 Higher-space dimensions
We have revisited the one-dimensional theory developed in [11] and extended it
to higher-space dimensions in [12]. We introduce an L1-functional augmented
with an entropy functional that is dimension-dependent. We have proved in [12]
that the approximate solution obtained by minimizing this combined functional
converges to the unique viscosity solution.

The method has been tested numerically. We show in Figure 2 two compu-
tations performed on the eikonal equation using two types of meshes. The first
mesh is aligned with the discontinuities of the gradient of the solution and the
second mesh is unstructured. The results are reported in Figure 2. For both mesh
types, we observe that the approximate L1-minimizer is similar to the Lagrange
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Figure 2: Pentagon: Aligned unstructured mesh (left); Non-aligned unstructured
mesh (right).

interpolant of the exact solution on the same mesh. This is what we should ex-
pect intuitively: i.e., the L1-minimization process solves the equation in the region
where the solution is smooth and simply ignores the PDE in the regions where the
gradient of the exact solution is discontinuous.

3 Surface and image reconstruction

3.1 L1 data reconstruction
In geometric modeling and image reconstruction, one often tries to extract a shape
or recover a piece-wise smooth surface from a set of measurements. That is, one
wants to find a surface that satisfies constraints or fits given data and is visually
pleasing. The objectives could vary with the applications but the intuitive goal is
to preserve the shape of the object. For example, one may want to reconstruct a
convex body if the underlying data comes from a convex object, a flat surface if the
data is locally flat, or preserve a particular structure of the level sets. Sometimes,
this type of problem is solved by minimizing an L2-norm of the Hessian.

In [15, 3], we have taken a different approach that we think is well suited for
man-made surfaces, Digital Elevation Models (DEM), and enhancement of digital
images. Namely, we minimize the total variation of the gradient of a function con-
structed on a finite element space satisfying interpolatory constraints. Minimizing
the total variation of the gradient of a smooth function amounts to minimizing
the L1-norm of its second derivatives. The key observation is that using the L1-
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norm in the minimization process produces oscillation free surfaces. In [15, 3]
we have developed a surface reconstruction technique based on the minimization
of the total variation of the gradient. Convergence of the method is established
and an interior point algorithm solving the associated linear programming prob-
lem is introduced. The reconstruction algorithm is illustrated on various test cases
including natural and urban terrain data, and enhancement of low-resolution or
aliased images.

Figure 3: Barton Creek data set. Q1 interpolant (top left); L1-reconstruction (top
right); zoom of the Q1 interpolant (bottom left); zoom of the L1-reconstruction
(bottom right).

In Figure 3 we reconstruct the elevation map of an area near Barton Creek in
Austin, Texas. We use the elevation map of a 3km×3km terrain. The data comes
from the Digital Elevation Models (DEM) data files produced by the U.S. Geolog-
ical Survey (USGS) (DEM data is available at http://www.webgis.com/terraindata.html).
The data set in sampled on 100×100 uniform Cartesian mesh. The Q1 interpolant
of the data and the L1 cubic reconstruction are shown in Figure 3 (two top panels).
To better appreciate the quality of the L1 cubic reconstruction we show a zoom of
a small region in the two bottom panels of Figure 3.

In Figure 4 we show how the L1 reconstruction technique can help to recon-
struct blurred or aliased text. The original aliased picture is in the top panel of
Figure 4. It is the word CESKOSLOVENSKO. The left panel in the second and
third row are zooms of the original picture. In the second row the image is in gray
scale and in the third row we use only black and white. The center and right pan-
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(a) Original picture.

(b) Zoom of original picture. (c) L1-reconstruction.

Figure 4: ČESKOSLOVENSKO test case. Original picture (left column). Zoom
of original picture (middle column, gray image (top), BW thresholding (bottom)).
L1-reconstruction (right column, gray image (top), BW thresholding (bottom))

els are two different cubic L1 reconstructions. It is clear that our technique really
improves the image since one can certainly read the aliased word in the picture in
the bottom right panel.

(a) Original picture zoomed (b) L1-reconstruction

Figure 5: Pepper test case.

We now show how our L1-reconstruction method works on a pepper image. A
zoom of original down-sampled image is shown in the left panel in Figure 5. The
result obtained using the L1-reconstruction is shown in the right panel in Figure 5.
The improvement is clear again.
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3.2 Local L1-minimization and parallelization
The key question one faces when using L1-minimization techniques is to make
the minimization algorithm fast and capable of solving very large problems. We
have considered two possible approaches: (i) localL1-minimization, which allows
parallel implementation; (ii) different implementation method (i.e., augmented
Lagrangian algorithm). Both of these were implemented for image/surface en-
hancement and linear transport problems.

Figure 6: Lena Test. Original image (top left); down-sampled image (top center);
Standard bi-cubic reconstruction (top right); First Jacobi iteration of local L1-
reconstruction (bottom left); Third Jacobi iteration (bottom center); Global L1-
reconstruction (bottom right);.

In our previous works the L1-minimization problems were formulated glob-
ally over the whole domain of interest, see [2, 3] and even though the results
obtained are excellent, the computational time are too large for large problems.
To address this issue we have developed a new method based on a divide-and-
conquer strategy. Instead of computing the minimizer over the whole domain at
once, we divide the domain of interest into sub-domains and compute local L1
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minimizers in each sub-domain. This local L1 minimizing technique is used in a
Jacobi iterative scheme to reach the global minimizer. The Jacobi iterations are
repeated until a residual is within a fixed tolerance. The construction of the local
L1 minimization problems is not trivial and it is not evident that by performing
local minimizations one can reach the global L1-minimizer. Our numerical results
confirms that this is true in all the test cases that we have considered so far.

Figure 6 shows results for the standard Lena test problem. We have down-
sampled the 512×512 gray-scale original image to a 128×128 image by averaging
4×4 pixel blocks, and then the down-sampled image is reconstructed with both
the local and the global L1 minimization algorithm. The improvement over the
standard bi-cubic algorithm used in practice is clear. These tests reveal that 1)
local solutions on aggregates are faster than solving the global problem; 2) only a
few (in many cases just one) Jacobi iterations are enough to be close to the global
L1-minimizer for practical purpose. This technique can used for designing fast
algorithms for surface reconstruction and transport equations with sparse local
structures/residuals. Our numerical tests show that the local algorithm performs
well on the Digital Elevation Models that we considered in [2, 3].

Figure 7: Pepper test. Down-sampled image (top left); standard Bi-cubic recon-
struction (top right); First Jacobi iteration of local L1-reconstruction (bottom left);
global L1-reconstruction (bottom right);.
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The local L1 minimization algorithm can be implemented in parallel. In a
parallel setting the local sub-problems are solved concurrently, and the final result
is communicated between CPUs afterwards. Table 1 shows the speed-up obtained
on a machine with 64 processors for the Lena and the pepper tests. Note that these
speed up figures are conservative, as we obtain them by performing a few more
Jacobi iterations than one typically needs in practice.

Problem Global algorithm Local parallel algorithm Speed up
Lenna test 2300 s 56 s 41
The pepper test 1741 s 21 s 83

Table 1: CPU time for the global and local parallel algorithms (64 CPUs).

Another direction of improvement is to use a different algorithm than the inte-
rior point method for computing the L1 minimizers. We have explored an operator
splitting technique known as the Augmented Lagrangian algorithm. We have been
able to show that, depending on the accuracy required, the Augmented Lagrangian
can be faster. Table 2 compares performance of the two algorithms on the pepper
image problem for different accuracy requirements, see Figure 7.

tolerance 0.5 0.2 0.1 0.01 0.001
Augmented Lagrangian Algorithm 51 185 612 4250 10000+
Interior Point Method 173 284 519 1741 8872

Table 2: Time required to reach the same error tolerance for the Interior point
point and the Augmented Lagrangian algorithm. Times are in seconds.

Our numerical tests show that the augmented Lagrangian method converges
relatively fast initially but then slows down. The interior point is slow but superior
when it comes to achieve high accuracy. We are currently working on combining
the fast, but inaccurate, Augmented Lagrangian method and the slow, but accu-
rate, Interior Point method into an adaptive algorithm. The above results will be
reported in a forthcoming paper [14].

4 Entropy viscosity
We report in this section on our findings regarding approximation of nonlinear
conservation equations using a new method that we call entropy viscosity.
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4.1 Entropy viscosity for nonlinear scalar conservation laws
Nonlinear conservation equations can all be put into the following general form:

∂tu(x, t) +∇·f(u(x, t)) = 0, x ∈ Ω, t > 0, (2)

with u|t=0 = u0 and appropriate boundary conditions. The scalar initial boundary
value problem has a unique entropy solution which satisfies an additional set of
differential inequalities

∂tE(u) +∇·F (u) ≤ 0, (3)

for any pairs E(u) and F (u) such that E is convex and F ′(u) = E ′(u)f ′(u). The
function E is called entropy and F is the associated entropy flux. For convex
fluxes (i.e., if f is convex) in one space dimension it is known that one entropy
pair, for example the one generated by E(u) = 1

2
u2, is enough to select the unique

entropy solution. Physical systems have at least one entropy pair and the entropy
inequality (3) is the mathematical form of the second principle of thermodynam-
ics. It is expected that the auxiliary inequality (3) serves as a selection criteria
and guarantees convergence of the numerical approximation to the correct physi-
cal solution of the nonlinear system. Therefore, it is desirable (and necessary) to
somehow incorporate the entropy dissipation (3) in a numerical scheme.

A traditional way of selecting the entropy solution of (2) consists of adding
viscous dissipation

∂tu
ε +∇·f(uε)−∇·(ε∇uε) = 0, (4)

where ε > 0 and it can be shown in general that uε → u when ε → 0. The
parameter ε is usually taken to be proportional to the local mesh size when con-
structing numerical approximation of (4) and this limits the convergence rate to
first-order at most. The use of artificial viscosity to solve nonlinear conservation
equations has been pioneered by Neumann and Richtmyer and popularized later
by Smagorinsky for LES purposes and by Ladyženskaja for theoretical purposes
in the analysis of the Navier-Stokes equations. The early versions of artificial vis-
cosities being overly dissipative, the interest for these technique has faded over
the years, especially in the Discontinuous Galerkin Finite and Finite Volume liter-
ature, where up-winding and limiters have been shown to be efficient and to yield
high-order accuracy. Up to a few exceptions slope limiting is a one-dimensional
concept that does not easily generalize to unstructured meshes in higher dimen-
sions. Moreover, the theoretical understanding of the stability and convergence of
limiters is currently restricted to uniform grids and scalar equations in one space
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dimension. For the above reasons and, among other things, the fact that artifi-
cial viscosities are easy to implement, the interest for artificial viscosity has lately
been revived in the DG literature and in the Continuous Galerkin (CG) literature
as well.

We have introduced a new technique for generating high-order numerical ap-
proximations for nonlinear conservation equations in [9, 5, 10] using continuous
finite elements and spectral elements. The main stabilization mechanism in this
method is a nonlinear dissipation proportional to the local size of an entropy pro-
duction. For this reason the method is called entropy viscosity. It is usually argued
in the literature that good artificial viscosities can be computed from measures of
the local regularity of the solution or from the local residual of the PDE. We
propose to take a slightly different route by considering the local residual of an
entropy equation to construct the artificial viscosity.

ε ∼ ch2|∂tE(u) +∇·F (u)|. (5)

One immediate consequence of this choice is that the viscosity is proportional to
the entropy production, which is known to be large in shocks and to be zero in
contact discontinuities. As a result, this strategy makes an automatic distinction
between shocks and contact discontinuities, and this subtle distinction cannot be
made by any of the two classes of methods mentioned above. We also think
that using the residual of the conservation equation may be less robust than using
the entropy residual. This argument is based on the observation that consistency
requires the residual of the PDE to converge to zero in the distribution sense as the
mesh-size goes to zero, whereas the very nature of entropy implies that the entropy
residual converges to a Dirac measure supported in the shocks. This implies that
the entropy residual focuses far better in shocks than the PDE residual, and it is
in this sense that we claim that the PDE residual is less reliable than the entropy
residual. This can be better understood by considering the simple case of the one-
dimensional Burgers equation ∂tu + 1

2
∂xu

2 = 0 with initial data u(x, 0) = 1 if
x < 0 and u(x, 0) = 0 otherwise. The entropy solution is u(x, t) = 1−H(x− 1

2
t)

where H the Heaviside function. One observes that the residual of the equation
is zero, whereas the entropy residual is an negative measure: 1

2
∂tu

2 + 1
3
∂u3 =

− 1
12
δ(x − 1

2
t), where δ is the Dirac measure. This effect is very well illustrated

on the one-dimensional Burgers equation over the interval (0, 1) with initial data
sin(πx), see Figure 8. We show in this figure the entropy viscosity computed by
using either the quadratic entropy E(u) = 1

2
u2 (first and second panel from the

left) or E(u) = u (third and fourth panels). Choosing E(u) = u corresponds to
using the residual of the PDE for the viscosity. These tests show that choosing
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(a) E(u) = 1
2u

2 (b) E(u) = 1
2u

2, c = 1 (c) E(u) = u, c = 1
2 (d) E(u) = u, c = 1.

Figure 8: Entropy viscosity in log scale for the Burgers equation at t = 0.25

E(u) = 1
2
u2 leads to better focusing of the viscosity and is more robust with

respect to the multiplier c (see definition (5)).
Although no convergence proof of the entropy viscosity method has been pro-

duced yet, the method has been shown in [9, 5, 10] to deliver high-order accuracy
by testing it on a large variety of benchmark problems. We have recently proved
that the algorithm with explicit time stepping is indeed L2-stable for nonlinear
scalar conservation equations, [1].

4.2 Compressible fluid dynamics
We have generalized the entropy viscosity concept to the compressible Euler equa-
tions by using the physical entropy to construct the entropy viscosity.

4.2.1 Continuous finite elements

We have tested the method with continuous finite elements. We show in Figure 9
the density field at t = 2.86 and the viscosity field at t = 4 for the classical wind
tunnel problem with a forward facing step at Mach 3. We observe that the viscosity
focuses very well and there is almost no viscosity in the contact discontinuity that
develops at the top of the flow.

We show in Figure 10 the density field at t = 0.2 for the double Mach reflec-
tion problem at Mach 10. We observe again that there is almost no viscosity in
the contact discontinuity that develops from the first triple point; moreover the jet
develops the standard instability at the bottom of the domain.
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(a) Density at t = 2.86 (b) Entropy viscosity flux at t = 4

Figure 9: Wind tunnel with a step at Mach 3, P1 approximation.

(a) Density (b) Entropy viscosity

Figure 10: Double Mach reflection, t = 0.2, P1 approximation.

We have also developed two different techniques to enforces boundary condi-
tions on curved boundaries, which is not an easy task for nonlinear conservation
equations. We are also using the entropy viscosity framework to construct a goal
oriented refinement strategy. The method is well developed by now, see [10, 7, 8].
We have solved various benchmark problems with finite elements, spectral ele-
ments and Fourier. We show typical results in Figure 11.

Figure 11: Supersonic around a cylinder in a tunnel. P1 approximation. Density
field (left) and entropy viscosity (right).
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4.2.2 Discontinuous Galerkin finite elements

The entropy viscosity method has been extended to the Discontinuous Galerkin
setting in [16]. In introducing appropriate numerical fluxes the method is proved
to be consistent with an entropy inequality. The numerical performance of the
method is observed to be independent of the chosen polynomial degree of approx-
imation. To the best of knowledge the extension of the entropy viscosity method
to discontinuous finite elements had never been done before.

(a) Q1 (b) Q2 (c) Q3

Figure 12: Riemann problem 12 at T = 0.2 using discontinuous Galerkin plus
entropy viscosity stabilization. Q1 (left), Q2 (center), Q3 (right), 128×128 cells.

As an illustration of the method we demonstrate its performance in Figure 12
on the classical Riemann Problem 12 from a paper by Liska and Wendroff. It
is a two-dimensional Riemann problem developing complex structures involving
shocks and contacts. The computational domain is Ω = (0, 1)2. The heat capacity
ratio is γ = 1.4 and the initial data is

p = 1, ρ = 4/5, u = (0, 0) 0 < x < 1/2, 0 < y < 1/2,

p = 1, ρ = 1, u = (3/
√

17, 0) 0 < x < 1/2, 1/2 < y < 1,

p = 1, ρ = 1, u = (0., 3/
√

17), 1/2 < x < 1, 0 < y < 1/2,

p = 2/5, ρ = 17/32, u = (0, 0), 1/2 < x < 1, 0.5 < y < 1.

(6)

Due to the finite speed of propagation of perturbations, the solution of the problem
in (0, 1)2 is identical to the restriction to (0, 1)2 of the solution to the Riemann
problem in R2 up to time t∗ := s

2(s2+0.6)
> 0.32, where s = 3√

17
. The time

stepping is done with RK4 with CFL = 0.25. The computations are done with
Q1, Q2 and Q3 discontinuous finite elements on a grid composed of 16384 = 1282
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quadrangular cells. The total number of scalar degrees of freedom for the Q1, Q2

and Q3 approximations are 65536, 146456, 262144, respectively, i.e., 47×(k+ 1).
We show in Figure 12 the density field at T = 0.2 < T ∗ for the Q1, Q2 and Q3

approximations. The results compare well with reference solutions. The shocks
and the fine structures that develop behind them are very well described. The
method behaves well as the polynomial degree of the approximation increases.

4.3 Lagrangian hydrodynamics
Through collaborations with colleagues at Lawrence Livermore National Labo-
ratory, we have recently started to extend the entropy viscosity methodology to
Lagrangian hydrodynamics. Our first experiments have shown that the method
extends naturally to this setting without any particular difficulty, thereby proving
again that the methodology that we propose is very flexible. This is an ongoing
work, no formal report has yet been written, but we can show some preliminary
computations done by a student that has been supported by the grant (V. Tomov).

(a) Riemann 12, Q2, 32×32 (b) Sedov, Q3, 32×32

Figure 13:

We show in the left panel of Figure 13 the solution of the Riemann 12 problem
at t = 0.2. The deformation of the Lagrangian mesh is clearly visible. This
computation has been done with Q2 continuous finite elements. We show in the
right panel of Figure 13 the solution of the so-called Sedov blast problem. Here
again the deformation of the Lagrangian mesh is clearly visible. This computation
has been done with Q3 continuous finite elements.
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